мультивектор - traduzione in Inglese
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

мультивектор - traduzione in Inglese

Бивектор; Тривектор; P-вектор; Поливектор

мультивектор         
m.
multivector
тривектор         
m.
trivector, three-vector
поливектор         
m.
multivector, linear tensor, skew-symmetric tensor

Definizione

Поливектор
(от Поли... и Вектор

(математический), тензор, кососимметрический относительно любых двух своих индексов (см. Тензорное исчисление). Т. о., П. есть тензор, имеющий индексы либо только ковариантные (нижние), либо только контравариантные (верхние), из которых каждый изменяется от 1 до n, причём компонента П. умножается на -1, когда какие-нибудь два её индекса обмениваются местами. Смотря по тому, равна ли валентность П. (т. е. число его индексов) 2, 3,..., m, говорят о бивекторе, тривекторе..., m-векторе. Например, aij есть ковариангный бивектор, если aij = - aji; bijk - контравариантный тривектор, если bijk = - bjik = bjki = - bikj = bkij = - bkji. Если из компонент m-вектора сохранить только те, для которых i1 < i2 <... < im, то останется "существенных" компонент. Компоненты П. можно определённым образом расположить в прямоугольную матрицу из n строк и столбцов, ранг которой называется рангом П. Если ранг П. равен его валентности, то П. является альтернированным произведением одновалентных тензоров и называется простым.

Wikipedia

Мультивектор

Мультивектор — элемент внешней алгебры, представляющий собой сумму поливекторов (векторов, бивекторов, тривекторов и т. д.).

Любой поливектор (k-вектор) можно представить как сумму k-лезвий (простых k-векторов), где каждое k-лезвие в свою очередь разложимо на внешнее произведение векторов количеством k штук.

2-лезвие может быть геометрически представлено как ориентированная плоскость в пространстве любой размерности и может использоваться для представления вращения в нём.

n-вектор в пространстве размерности n называется псевдоскаляром, тогда как (n-1)-вектор называется псевдовектором. Так псевдовектором трёхмерного пространства является любой бивектор.

Сумма 1-вектора и скаляра также известна как паравектор.

k-вектор дуален к k-форме.

Свойства: